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ABSTRACT

This report presentsperformancemeasurements made of the Sprite operating system
running on a multiprocessor. A variety of micro- and macro-benchmarks were run
while varying the number of processorsin the system, and both the elapsed time and
the contentionfor kernel locks were rt_orded. A number of interesting conclusions
are drawn from the results. First, the macro-benchmarks show acceptableperformance
on systemsof up to five processors.Total systemthroughputincreasesalmost linearly
with the system size. Projectionsof the lock contentionmeasurements show that the
maximum performance will b¢ reached with about seven processorsin the system.
Second, it is often difficult to predict rig effect of a benchmark on particular kernel
locks. It was anticipated that different benchmarks would saturate different kernel
monitor locks. After running the benchmarks it was found that a single master lock
was the biggest kernel bottleneck, and that one of the micro-benchmarks had saturated
s different lock than the one at which it was targeted. The kernel locking mr•ca•re
has become so complex as the system has evolved that it is hard to determine cause
and effect relationships. Third, although the kernel contains many locks, only a few of
them are performance bottlenecks. Performance measurements such as those presented
here allow the relevantpartsof the kernelto be redesigned to eliminatethe
bottlenecks. Suchs redesign is needed to allow the system to scale gracefully beyond
about seven processors.

1. Introduction

Sprite is a network operating system being
developed at lkrkeley [6]. From its inception Sprite
has been designed to run on a multiprocessor. To
avoid Performance bottlenecks due to kernel conten-
tion, the kernel is multi-threaded to allow more than
one processor to execute kernel code at the same
time. Exclusive access to kernel resources is
ensured through the use of locks. There is a limit to
the number of processors that can be in the kernel
and doing useful work, however. Once a lock
saturates, additional processors will not significantly
increase system throughput. The goal of our study
was to determine how well Sprite scales with the
size of e multiprocessor, by running a variety of
benchmarks and measuring both contention for ker-
nel locks and overall system Performance.

The benchmarks were chosen ¢ith_ ito stress
particular kernel locks or to resemble user work-
loads teen in the Sprite development environment.
The former were used to measure how well the sys-
tem behaves when locks became saturated, and to
identify locks that are potential bottlenecks. This

The work described here was supported ia part by the
Dgfense Advanced Rest.arch Projects A_gency under
contract N00039-85-R-0269 and in part by the Nadomd
Sclenc_ FoundationundergruntE_$1961.

information can then be used to restructure the ker-

nel to improve its behavior. The latter were used to
me_ure the system's ability to scale while running
realistic workloads, determining both the limit on
system size and theeffect of adding another proces-

to the system.

TIg results indicate that contention for the ker-
• el context switch code is the biggest limitingfactor
to scaling the system. The lock protecting this code
becomes very heavily utilized with only live proces-
mrs ia the system. Measurements of the realistic
workloads indicate that the lock will become

saturated with about seven processors in the system.

The rest of the paper is structured as follows.
Section 2 describes the types of locks used in the
Sprite kernel, and Section 3 describes the multipr_
eeasor Imdware used to obtain the measurements.

'I'ae lnslrumentation added to the Sprite kernel is
outlined in Section 4, and s description of the bench-
marks is ia Section $. The resultsMe in Section6,
followed by comments in Section 7 and co_luding
remarks in Section 8.

2. Kemd locks

in order for a multi-threeded kernel to function
correctly it must contain mechanisms for providing
both mutual exclusion and synchronization between
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threads. Other efforts to design multiprocessor
operating systems have used semaphores [2,4.8].
Semaphoresare appealing becausethey eta provide
both mutual exclusion and syuchroni_tion, eliminat-

the need for separatemechanisms. Sprite, how.
ever, uszs monitor-style locking tad condition vari-
ables to provide these services.

Them are two basic types of locks in the Sprite
kernel: monitor locks and master locks. Monitor
locks are used to implement monitors [9], with
semantics similar to those in Mesa [$]. Monitor
locks arz acquired at the sum of a procedureand
releasedat the end. H a process tries to lock a moo-
itor lock and another pnx:_ has it locked already,
then the process is put to sleep. The release of •
monitor lock causes all processes that arc waiting on
the lock to be awakened and simultaneously try to
reacquire the lock.

The other type of lock in the Sprite kernel is
the master lock. Master locks are used in much the
same manner u monitor locks, except that they are
used to to provide mutual exclusion between
processes and interrupt handlers. A master Sock is
simply a spin lock that is acquired with interrupts
disabled. If a master lock is already in use when an
attempt is made to grab it, then the p_ retries
the locking operation until it succeeds. Interrupts
are disabled to prevent a situation where an interrupt
is taken after • master lock has been acquired and
the interrupt routine spins forever waiting for the
Sock to be released.

Locks have threedifferentstylesof usage in
theSpritekernel.These threestylescorrespondto
different locking granularities. Fine.grained locks
allow a high degree of concurrency, but they
increase the number of locks that a particular thread
must acquire, thereby decreasing its performance.
Coarse-grained locks reduce the amount of con-
currency, but improve the performance of • tingle
thread. The trick in designing the kernel is deciding
the placement and granularity of locks.

The coarsest granularity locks in the kernel are
single locks that are used to protect sections of code.
Locks used in this manner are referred to as ¢_[e
/ocks. If the lock is a monitor lock then the result-
ing construction is similar to the monltoredmodules
described in [5]. An example of this style of use is
the monitor lock around the Sprite virtual memory
system. There is t single monitor lock that mu_ be
grabbed whenever • routine in the virtual memory
system is called, thus synchronizing access to the
virtual memory system as a whole.

Tl_e remaining two styles of usage are varia-
tions on s theme. They both associate locks with
data rather than wiih sections of code. For this rea-
son they are referred to u data /ocks. Data locks
that use s monitor lock are referred to as mon/tored

objects in the Mesa paper. One style of usage

associates s kck with a data smama¢, in on_ to
manipulate the data structure the lock must be held.
A Jock that protects a queue is an example. The
5prise ale roche has a _ie lock that protects the
variow lira of g_e blee_ _ as the flee Usa,
dirty list, _. le oni_ to n_lify wy of tbese lira
the ale cache lock must be I_ld.

"i'ne6ram gnaultr_ leeks are umcbted with
kxlividual dam objectz. A Wonemor must hold this
lock before modi_inl the coetents of the object.
For example, each block in tbe Sprite ale cache has
• lock,and that lock must be held when accessing

coments of the block.

in _klttiea to ensuring mutual exclusion
betweenthreads,S_te must also provide • means
for threads to wait for interesting go_itiom to
occur. Co_f_on mrtab/es are usedfor this purpose.
H • Woce8 waits on • cotalition vmiable while
holding s lockitwill release the lock and be put to
deep. At • later time another process will signal the
condition variable, causing all processes waiting on
the variable to awake and try to reacquire the lock.
This signaling mechanism has the same semantics as
Mesa'sbrmdca_ facility.

Major Locks in the Sprite Kernel
Name Type Dek-'ri )tion

_cbed_Mutex Master _ontrois access to con,
_e_ switch code ant
runqueue

_tandleTableLock Monitor :ontrois access to table
Icode) _f all lmowe ale ham.

dies

rmMonitorLock Monitor lock around all virtual
',code) memory functions

_erPCBLock Monitor must be held when
(data) scoessingcontents of l

m_ceu control block

_lev]._.k Monitor mntmis aoces to indi.
(data) vidtud pseudo-<levicx

handles

=gitl.o_ Monitor _rovldes excl_ivl
Ccode) ur.eu to code for des,

_ying • process

_pa !. Some of the maj(x locksb the Sprite ka-
onito¢ lock types m qualifiedby a d_lgnation
them. Code indicates that the_ b s sin$1e

lockprotec_iqa_ sectionofrode. /_m desit-
ues dx,z locks br which tlkne b om lock j_.
ot,j_ Rmdla m Slxit,'s eq,ivtlm to U-.-'s

_icu m ui_ised Is_ b this

Figure 1 is • list of the major locks in the
Sprite kernel. There m many other locks in the
kernel, such as locks associated with the file system
cache, system timers, and the RPC system, but none
of these have • significant impact on system perfof
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3. The SPUR Hardware

This section outlines some of the features of
the hardware used in the mdy. Sprite does not
require any special hardware support foz running on
• shared-memory multi_r, ocher alum tn
stomi¢ test-and-set operation and coherent processor
caches. Details of the hardware m_ only provided to
allow comparisons to be made to more familiar
8MIch_IICS.

At the time of this study the only multiproces-
mr that Sprite supported wu the SPUR multiproces-
sor [3]. SPUR is a RIse microprocessor developed
st Berkeley ss pan of t project to study the impact
of adding symbolic processing support and muldpro-
cessing to R/SC architectures. Individual SPUR pro-
cessor boards can be combined W form • almred-
memory multiprocessor. The machine used in this
study has 32 Mb of shared maroon/ and up to five
processors. Each SPUR processor board has • 128-
kbyte data cache that is kept co.siena by hardware.

The SPUR prototype used in this study is not •
lmnicularly fast machine. The processor cycle time
is 140 us. Doe to a design error the on-chip instruc-
tion buffer is not functional, causing instruction
fetches to require several cycles. As • result, •
SPUR processor can execute about 1.5 native MIPS.
Furthermore, a lack of compiler optimization leads
to inefficient code. We estimate that the resulting
performance is equivalent to about 0.5 VAX MIPS.

4. lnstrument-tion

Contention for kernel resources was measured

by collecting information on lock behavior. We
added fields to each lock to record the number of
successful lock acquisitions (referred to Its hiu), _d
the number of unsuccessful attempts to _:quire the
Jack (misses). For some types of locks, such as the
locks associated with process control blocks, the
statistics for an individual lock aren't as useful

those for the type as • whole. For this reason the
individual lock counts were consolidated and
recorded on a per-type basis. Recording the infor-
mation on a per-type basis also makes it easy to han-
cue locks that are created and destroyed dynamically.
The lock counts for these transient locks are added

to the total for the type when the lock Js _royed.
The definition of what constitutes a lock miss

is different for monitor locks and master locks. For
master locks there is •t most one miss per hit. If •

cess misses on a lock it spins until the Jack is
then locks it. This sequence is counted as one
followed by • hit. On the other hand, Jt Js

possible for monitor locks to have more misses than
bits. If multiple processes are waiting when • lock
is released then they will all be awakened and will
• hemp• to grab the lock. Only one will succeed and
the rest will go back to sleep. Ifs process is swak-
m_d in this fashion and doesnot get the lock a miss

hrformance Measurements_

is m_rded. _ makes it passaic for the number
of misses on • too•sitar k_c to be Ip_ater than the
munbar of hits.

ia sdditioe to _ting the locks we also
seated new system calls to clear •ha lock inform•-
Uon und to copy the fmformstion to user-level.
"/'uese two calls were used to reset the lock informa-
tion _ tbe beginning of • test and pthar the infof
mstion when Jtam•plated.

S. llendunsrks

All of the benchmarks arg intended to stress the

operating system. Compute-bound applications were
_oided for that reason. The benchmarks can be
divided into two classes. Rr._l_ic workloads •re

mq_resenl_l by the macro-b_c&_rk.s. _ bench-
marks 8re comprised of real programs that represent
the Sprite development environment. The behavior
of the kernel while running abe macro-benchmarks is
indicative of its behavior under real workloads, and
allows projections to be made of maximum system
size.

Imlividual parts of tl_ kernel wen: stressed by
running • series of micro-benc_vsar_. For example,
• micro-benchmark may consist of repeated forking
of children, or repeated message passing between
processes. Such repetitive behavior is rarely seen in
real programs, but it does allow the behavior of dif-
ferent parts of the kernel to be isolated and meas-
ured.

Mncro-beschmarks

Pmakelnd

The pmokdnJ benchmark is intended to be
representative of • multi-user environment with mul-
tiple independent compilations taking pl_:e. Pmak.
eTnd recompiles Csh from its sources using the
Pm_ program. Pmake is similar to the UNIX
"make" utility, except that it runs the compilations in
parailel whenever possible [1]. The pmakelnd
benchmark runs • separate instance of Pmake on
each processor and each instance uses separate
copies of the sources.This eliminates the Pmske
program and mntention ford_esourcefiles as causes
of performm_ degradation. Each instance of
Pmake runstwo compilations concurrently, ensuring
that cacb processm remains _ilhly utilized.

Pmake

"l'nepmate benchmark is ulso • compilation of
the Cth sources, except that omly oee instance of
Pmke is rua, mtber than one per procetsor. Pmake
attempts to use all of the processors imthe system by
running two compilations per processor. The pur-
pose in rimming this benchmark is to see bow well a
single parallel application can harness the processing
power available in • muhiprocessor. Ideally tbe
application will realize linear speedup m the number
of processors is hgremed. A speedup that is less
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than linear is due to either contention in the kernel

or lack of concunency in the application. Since we
are primarily intereste..d in dz former effect nuber
than the ianer, tl_ finzl link of tiz Csh bin_ was
eliminatedbum tb¢ benchmark. "ntis _ tbz
concurrencyini_rentis the compmtion and
increuzd contention for kernel nmourou.

Tma

11_ Fro#"bem:hmarkconsistsof runningthe
tzxt formatting program Troff oa the man page for
Csh. The resultingoutput is aent to Ilk'v/nulL
Jl_ocessor runs a different insts/_ of Troff.

Micro-benchmarks

Twelve micro-benchmarks were ran, of which
only six arc discussed in this paper. The other siz
pertained to stressingtha file system, by reading
files, opening files, etc. The results obudncd were
not significantly different from _ first six and are
therefore omitted in the interest of brevity.

Fork

The fork benchmark consists of a process that
repeatedly forks off • child process using tke fork()
system call. The parent waits for the child to die
hefor¢ forking another child. The child process exits
immediately. This benchmark should m_ss the pro-
cess creation and destruction components, and abe
kerncl virmsd memory system. The context.switch
code will also he heavily utUized.

Fexec

The [Dec benclunark is similar to the fork
benchmark. A parent process repeatedly forks off
children, waiting for e_ch one to die before forkin_J
the next. The child process uses the aec() routine
to create another instance of itself instead of exitin&
This new instance then exits, allowing the parent to
continue. The ._r_c benchmark should stress
same components as the ,_vk benchmarks. Any
differencesin behavior are due to the call to zzecO.

Mere

Mere Js a benchmark that stressesthe
memory system. The process repeate_Jy iDcreu_
the size of its heap using the sbrk(')systemcall. Tke
new heap pages sur_not touched. Once the
reaches a maximum size j! execs itselfand starts

over. Mere istargetedat the virtualmcmo_ system,
paniculady the component th_ is respon_ble for
maintaining process page tables.

Cswitch

The .cswbck benchmark conrdm of two
processes that pass • byte beck and forth using •
pair of pipes. If this pak of processes is run oa •
single processor, then two context switches m
required pet round tr/p and the context switch code
should receive heavy utilization. The oontext
switches can be avoidedon • multip_ Jf the

processes surenan on different processors, lm order
to ensure that tke context switcl_ occur one p_ of
process• is nm per processor in flz symm.

Pdevt_

P_ stressesfilepseudo-devk:e implemen-
tation. Pse_ an: Like devkzs acept that
t_y an: impkment_ by ma.k, vel re'vet processes

services, inch as dispisyLqvers and network com.
municmioa pa_x:cls, to be Jmpicmemed m Im-
k'vcl mtha than in tbe kes_L A client pn)ceu
accesses a _ In the asme mmuzr as s
real device. "rbe kernel then forwards the request to
d_ m_.lcvcl server, instead of to a kcmcl device
driver. Pseudo-devices are almilar to die UNIX
•pay" mechanism, the onJy difference being that nil
operations on a p__, such as open, close,
andlocals, arepassed_oush to the server process.

The _ benchmark creates one pseudo-
device that is written to by multiple clients. Each
client repemedly writes one byte to the server.

Pdevtestlnd

This variation ms tlw p_e.s-t benchmark
creates multiple pseudo-devices. One server and one
client is created foreach instanceof thebenchmark

that is nm (i.e for each processor in the system).
The intent is to see fftherean= amy performance
bunlenecks in the pseudo-device implementation that
occur when there is • sinl;le server vs. multiple
f_rvers.

6. Results

The n_,ults are divided up into sections on
elapsed time for rennin8 tbe benchmarks, calcula-
tionsof abe Incremental throughpm for each addi-

tionalprocessor, monitor lock hehavim, and master
lock behavior. These measurementsindicate that the
micro.benchmarks suffer keavily from astumtion of
critical ruourees. The m_c'm-benchmarks also

experience performance dqpadation, but to a lesser
degree.

Elapsed time
The ¢isp,rzd time rm/o far the macro-

benchmarks is shown in Figure 2. 'rbe ratio is cal-
cuisted by dividing abe time it takes a system with n
processors to finish n benchmarks by flz time it
takes a uniprocessor to finish oue benchmark. For
nil but the/make benchmark the workload is scaled .
with the number of processon_ so u/deal system
would have s omssumt ratio of 1.0. The cwve for
the pma_ benchmark looks different because the
workload is no( seal_l with the number of pmces-
son. The compiladoa of the Csh sources always
runs faster with more processors. The ideal elapsed
time ratio for the pmake benchmark is l/n, where n
is the number of processors in the system. The
measured ratio for the pmaJ_ benchmark is very
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close to the ideal, falling behind only when there are
live processors in the symem.

glapsed time ratio

Rado 0.8

0.6

0.4

0.2

0.0 - , "'.
2 3 4 5

Processors

FTqgure2. A Irapb of the ratio of the mtdtiproecuor
elapsed time to nun abe ma,_o-benctuutrks to
am•processorelapsed time. The workload was scaled
with the syUem size (exc_ for the pmake bench-
w_u-k),causing _ ratio for u kle_l symem to be a
horizontal line st ].0. A ratio that is Ipreaterthan 1.0
indicates that the _ in Iplslmmthinly_put is tess
alumlinear. The/_n,_ke benchmark has t fixed work-
load, benoe its ideal curve should be l/n, where m is
the numberof procasson.

by _ pmcming is d_re.ued,
_nJving each Wocessor w alloc_ more cycles to
tie _ While running _ _0" sad l,mat-
dm, t benchmm'iu the dowdowm from kernel conten-

tion was mo_ thu _set by the mu_'tizmion of tbe
backgroundpmcm,_.

Figure3 s_vs the elq_.d time mio for the
mJc_be_ma_. Conumtionmuses tke elaps_
time d Idl rig lamchmarks to imca_ue over the
re,age of system sizes tm_. r.m two of the bench-
anarks the _ dine initially decreases due to
lunotT/zationof backgroundprocessingcosts, but this
benefit is zvzntually outweighed by contention for
kernel resources.

The t:_w_ackbenchmark has • worse than linear
dowdown: • system with five processors gtually
takes longer to complete the work glums uniproces.
sor should. None of the other benchmarks do this
badly, but neither do Ibcy come clmc to the ideal
ratio. All of the benchmarks show • steady increase
in the elapsed time ratio once there are three proces.
mrs in the system. This suggests that the micro-
benchmarks are severely affected by contention for
kernel resources and tl_ system throughput does not
increase sJlpdficantly if the system is r,caded beyond
three processors.

Imcremenud thrN_put

Elapsed time rltio per _ldltional processor

!l i
l_pre 4. lnc_.menud dwooghput per Jklitiomd Wo-
oumo_ whik smmiug tk m_no-bcnchmzrks. Two of

IFIgure3. This k n _ of tl_ ratio o( _e mul_ abe bea4:Jmmrks lave _ comma• im:rem_ml
cmsor ehps_ time to run tire micro-be.u_nm_ to tbmeghput, indicating that the i system throughput
the uMproces._relapsed time. As in Figure2 n ideal b _ to the stzc o( dn Wstcm.
system would hive • ratio of 1.0. All o( the bench-
Bark5 exhort 8_ JlM:_e_e in Ibe 8Js_ied _ U tiN: Imcr_mentsl throughput per sdditioul processor

_'stem size incrcues. TIg incremental throughput of sa I_kiitloMI
_ and ,p_lnd benc]u_u'_ have

elapsed time ratios that are tctutlly beuer (i.e. less)
than the kleal value of 1.0. This is because there is
n certain mount of background processing that must
be done that is independent of system tdze. This
ext_ work is due to other processes running on the
syucm and interrupts. As the number of processors
im the symem b i_creued, the per.processor load

processor is d_ net mount of qmrk per unit rime
tirol the processor i to the system. Throughput is
measured in processor _mks, which Jsthe [mount of

per unit time domeby • uniprocessor, lmcrc-
mental tluoughput is derived by taking the
throughput with n processors in the system, tnd rub,.
•acting rig throughput with a - ] processors. The
_sult is then normalized to tl_ throughput of a
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uniprocessor to obtain the incrcmenud throughput in
processor units.

Figure 4 shows the incrementM throughput per
processor for the mscro_nchnmrks. The indepen-
dent compilation of Csh (pnu_Jm_) and the troff of
theCSh man page (tvo_)curvesbothdisplay• gain
of more than one process_ unit when tbe secood
processor is added• As mentioned previously, this is
due to amortization of buckle•hal pnx_dvjl. Tke
zro_"benchmark does the bern of all, maintaining u
incremental gain of almost one process_ unit even
for the fifth processor.

lucremeutsltbr_ihput ......
persddltioutl pt'1_e_or

2.5O
2.25

• 2.0C
1.75
1.50
1.25
1.00

units 0.75
0.50
0.25
0.00

-0.25
-0.50
.0.75 . •
-1.00

Figure S. The isu_ementalth_--_h_i _ to the
system by each processor,in processorunits. Thex
measurements were taken while running the micro-
t_nchmarks. All benchmarks show ve_ little
throughputp/ned by adding additionalprocessors
once there are three processors in the s_em.

The pma_e benchmark shows • pin of more
than one processor unit of throughput for tbe third
processor, followed by decreasing gains for subse.
quent processors. Some of this effect is probably
due to kernel contention, although the lock miss
ratios aren't high enough to account for aU of it.
The rest is probably due to • lack of concurrency in
the Pmake pros•am. This is interesting because it
suggests that although there arc five processors in
the system, Pmake cannot make effcc_ve use of
them.

The micro-benchmarks all suffer from severe

degradation in elapsed tin_ as the number of proces-
sors is increased, therefore we would expect the
increm¢ntal throughput per processor to diminish as
well• This result is seen in Figure $. The
throufp_pu! gained by adding additional j_m:esso_
drops off rapidly so that the third processordoes not
add much, if any,-processing power to the system.
For a few of the benchmarks the third processor
actually produces negative processor units of
throughput, in effect slowing the system dowa. At
this point the scheduler lock has become Imtmted,

preventi_ additional _ from doing myming
useful.

Monltor lock

Tbc l_tphs of •be _nchmark monitor
lock miss nttios ,re shown in Figu_ 6. The miss
ratio of t lock is t/_ number of misses m that lock
divided by •be number of hits. Contention for moni-
tor locks does not appear to be • mawr perf_
bottleneck for • sys_m with five or fewer proces-
sors. The nmximum miss ratio forany bencbnutrk is
less than 18%. Extrapolation of the curves indicates
tim• monitor lock co•tension should nm reachsetura.
t_ Jevels until the systemisscaledby • hcsorof
three or four.

Mml_r lock miss rs_s

A,mSe n_

fexec

.... paevsesum 20_

1 !

(vmMonitorLock)
---- tmff

(vmMonitod.ock)

_ pm_bxl
(vmMonitm'Lo_)

Flpr_ 6. Graphs of Ifx monilor _ miss ratks
whik rumdni the mu:m-benchm,du. 'rbe Ip-apbon
the left is the mm redo .w.er841_ ,cross MI monitor
locks. _ IP_._. on the right = the miss ratio of
lock with the hishest miss mlio. The nsme of the lock
with the highest miss ratio is displayed in jNmmtheses
underthe Mine of tl_ benchmark.

The highest monitor lock miss ratio occurs on
the same lock for Idl the benchmarks. The kernel
has, single monitor lock, vmMonitorLock, that sur-
rounds the endre virtual memory system. Any rou-
tines that modify the virtual memory state must hold
Ibis monitor lock. When the virtual memory system
was written the emphasis was mt cosec•rinse, rath_
than concurrency, hence vmMonltorLock's monol-
ithic nature. However, the benchmarks suggestthat
system performance on larie multiprocessors could
be improved by rephn:ing the •angle vmMonitorL_k
with several locks on individual dam stru_urea.

The monitor lock miss ratios while running the
micro-benchmarks are shown in Fiipm_ 7. Most of
the curves have small slopes and small mtximum
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values. Escept]ons are the p_.wesr sad caw¢_
benchmarks. The muses of the contentioncan be
found by eumining tha kernel code. _ .e<_es't
benchmark spends it Jet of its time copying the data

IPaqrormance Meamu_mmtr__

Two tuber locks show up in the graph of the
highest monitor lock miss ratio. ExitLo_ and

vl.ock have the highest miss ratio of' any monitor
while running abe jb_t and _rew_ ben_-

from the client's address spa_ to the server's. A marks, respectively. The ndss ratios Jureummonitor Jock ..m_c_***ted.with tJ_ mervl_ _ mough, Jsowever. to warrant replacing em_bof these
(per_"BLock) u held duruql the copy. If there ire locks with multiple locks unless there are many
multiple ¢_nts then this lock is, cridca] resource, moee processors in the system.
With more than three clients the lock is hzld all of Idam_ l,ck ,a, mall

the time. causing the miss ratio m mJch almost two Aven_hundred percent. ]Each time • process releases tbe 1 100%
lock more than one process is ,wakened causing
more total misses than hits.

Monitor lock mira r_tlm

Average Higbea 410%

,25 I /"

I I

1 2 3 4 $ --1 2 3 4 $

Processors Pmcmsors (,d_ M_x)

0umdkTabldxck) (vn_4onimd.zck)

•-'-- fexec _ pdev_sl
(vnd_onkorLock) tO=P_l.ock)

_. pdev_mlnd
_" _e°_t/.ock) (pdevLoek)

(x*¢d_Mutex)

IP_urt 8. Graphsof the muler Jockmissratioswhile
running the m•cro-benchmm'ks.All of Ihe curves
have a sleep slope due to contentioe for the scheduler
lock.

Muter lock measurements

i,

i

lqlpr_ 7. 11z avcnqle and _ moekor lock miss Tbe graphs in Figure 8 arc plots of the mister
r, tms whne runningthe micro-benchmarks. Note that lock miss ratios for the umczx_.l_nchmzrks. All of
the vertical sc,Jes on the two Ipsphs arc not tk •me. the curves show increasing mounts of contention as
Benchmarks whose curves have, steep dope will not the s/ze of the system is increased. AJl of this con-
sc,lc wcu to larger symems due to mmmtioe of • tent]co is due to ached Mutcx, the master lock
monitor lock. The htitildJy high vlJues for some _ the scheduler. Sched Mutex has • higherbenchmarks oe a one processor system me due to MI
of the benchmarkprocesses exiting al one, causing a In•as ratio than any other lock in the kernel for
ki_ miss ratio Mthough Uz 81xolutc nmnber of hits Idmost aU of the benchmarks. This Js surprising,
ml misses is ve_ low. since out _mrd intuition was that wmous monitor

Jocks would at•rate fJrat, it turns out that
Icbed Mutex is used in many different places in the
kernel. Its main funet]on is to provide mutually
exdusive 8_cessto the run queue, but it is also used
for other purposes, including synchronization when •
miss occursoe • monitor Jock (see FiB•re 9). As •
result, an increase in the miss ri_ for monitor locks
will increasethe comcnt]oe for •:bed lvlutex:

Tha iffIphs in Figure 10 are plots of the master
lock miss ratio for the micro-b_chmarks. The
dopes of the _mves are quite steep - all bench-
marks have an average miss mlo on a five processor
wstem that is between _ty and eighty-five percent.
"rbe Idflhesl miss ratio forany Jock was greater than

The csw_cb benchmark uses pipes to pass a
byte between processes. Each time • pipe is
accessed a monitor lock m_und the Ne lumdle table
('mmdleTableLock) in the _mcl is gabbed.
Although different pairs of processes use different
pipes, they all need to grab the handle table monitor
lock. causing • bottleneck. This Js • surprising
result, sincethe esw/_cAbenchmarkwas intended to

stressthecontextswitchcode. Itisno(alwayseasy
to predict what effect • particular kernel lock will
Mve on a benchmark'spedormance.
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eighty percentfor 811benchmarks,and in some cases
was higher than ninety percenL Once |gain this
contention is for Ichccl Mutex. _dthough the
micro-benchmarks were uu'getedat an array of ker-
eel monitor and master locks, they all piled up oa
the scheduler lock. Clearly the im_ of this
singlelock must be reduced.

_tas on :weLter lock.

Lock eched_Nutex.
Put process on vaJ.t queue for

lonLtor lock.
lenove ftrst process from ready queue.
Context avJ.tch to the ready proceal.
itelease sched_Nutex.

Figure t. This se.que_ of evcnu atom when acats misses on • moedtor lock. Note
_hed Mutex Js used to synchronizenccess to the
queueof processeswaitingfor the monitorlock, as
well as the ready queue. This unnccessat/ly increases
the total length of time thatached Mutex k bead. The
addition of individual master l_.ks to synchronize
accessto the wait queuefor _ch monitor lockwould
reducethe lengthof the critical w.._ioaprote..ctedby
sched_Mutexandreduceits utilization.

"7.Comments

A running Sprite kernel contains anywhere
from five hundred to 8 thousand locks. Of these

locks, two repeatedly suffered more contention than
the others. These two locks, ached Mutex and
vmMonitorLock, account for most of the contention
for kernel locks and represent serious obstacles to
better system performance. Both of these locks are
code locks that protect large regions of the kernel
code. In order to reduce their impact they must be
replacedby several data locks with a finer granular-
ity. It is not necessary to have single locks •round
the virtual memory system and the context switch
mechanism. Replacing these locks with data locks
on the various kernel structures will increase the

concurrency and system performance.

There •re • number of factors that cause system
performance to depend heavily on contention for a
few locks. The first is ease of design, it is much
simpler to design t system with • few locks than it
is to design one with many locks. Multiple locks
may increase the concurrency,but they 81so increase
the chance of introducing race conditions and
deadlocks. A single lock should be replaced by mul-
tiple locks only if performance measurements indi-
cate that the single lock is • bottleneck.

The second factor that causes performance.
critical locks is that they develop during the evolu-
tion of'the kernel. Race conditions and deadlocks
tend to occur as new featuresare added to the ker-
nel. When 8 kernel developer is faced with such an
unwantedside-effect they typically rewrite their new
feature to hold the most prominent lock they can
find. In this manner prominent locks tend to become
more important, until they _e held in many places

throughout the kernel for many diffcmmt reasons.
Such is the case with ached Mutex. Its influence
Brew at the kernel was modified and qmchronization
problems mm¢.

The underlying cause of both the design and
development problems is fl_ lick of tools. The
graph of lock dependencies in the Sprite kernel is
fairly complex. Toois are needed to help understand
the m]n_don requirements of the various ker-
uel resources and wt_re to place locks to satisfy
those requirements. Ouc_ the locks are in place,
tools are needed to measure the performance of the
locks in order to find the performance bottlenecks.
Our measurements of kernel locks in Sprite found
that it is not always obvious which locks will be
bottlenecks and why.

Master inckrobsratJoe
Averuige HIgbest

l 100_
90_

70_

_cewiu:h -- mere
(lumdleTahleLock) (vmMonitorLxx:k)
f_ec _ pdevmt
(vmMoniwLock) (perPCBLock)

(pdevLock)

Fiaure 10. Graphsof the mmu k_ mm ratiownue
running the micro--benclumu_ Tee steep slopes of
the curves 8re due to • heavycontention for"the eas-
e lock amuad the scheduler.

8. Coscludom

The elapsed time and incremental throughput
measurements for the macro-benchmarks indicate

that the Sprite kernel gives acceptable performance
oa a machine with up to five processors. All of
these benchmarks showed an almost liacar speedup
as the system was scaled, and two of them showed
almost consumt inc:emenud tluoughput peg
sot'. The perform•rex degrndation of _ ,tanaka
benchmark was primarily due to sequential proceL_
leg in tl_ application, rather tlum kernel contention.
This underscoresthe difficulty of writing 8 s/erie
application that can make full use of a
multiprocessor's processing power.
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Although the am_nchmarks exh_ited suit-
able performance increases for the system sizes that
were measured, the w.hed_Mutex master lock
approached uturation. With five processors in the
system its miss ratio was close to seventy percent,
indicatingthat the lock In_efr.d very heavy conten-
tion. From this it would appear that without elimi-
nation of some of the more impommt bottlenecksthe
kernel will not support more than seven processors
in the system efficiently, mtcelM for no•pate-hotrod
tq_lications.

Prior to undertakingthis studywe had msum_
that the kernel monitor locks were fig biggest per-
formance bottlenecks, in particular, Jt was feared
that the single monitor Jeck •round the virtual
memory system posed the biggest obstacle to scaling
the •umber of processors in the system, it came a
surprise that a master lock, ached Mutex, was more
heavily utilized than the virtual memory system
lock. We were also surprised when micro-
bench••'ks stressed unintended locks. The behavior
of kernel locks is difficult to lwedict, even to the
people who designed the system. Clearly there is s
need for tools to help system developers to better
understand and modify the locking structuresof mul-
tiprocessor operating systems.
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